
Summary of Lecture 5

• In lecture 5 we learnt how to pick the reproduction levels for the given
thresholds.

• We learnt how to design MSQE optimal (Lloyd-Max) quantizers.

• We reviewed linear systems, linear shift invariant systems and
the convolution sum.

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 1



LSI Systems and Convolution

S is a linear shift invariant system with input-output relationship H.

H(A(i, j)) = H(
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)δ(i− k, j − l))

=
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)H(δ(i− k, j − l))

h(i, j) = H(δ(i, j)) the impulse response of the system S.

H(δ(i− k, j − l)) = h(i− k, j − l)

H(A(i, j)) =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)h(i− k, j − l)

which is the the convolution sum.

• Everything about the LSI system S is “in” h(i, j).
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Convolution

B = A⊗ h:

B(i, j) =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)h(i− k, j − l) (1)

Properties:

• A⊗ h = h⊗A.

• A⊗ δ = A.

• Finite extent 2−D sequences A (N1 ×M1), h (N2 ×M2):
(for e.g., A(i, j) 6= 0, 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ M1 − 1, etc.)

– C = A⊗ h is (N1 + N2 − 1)× (M1 + M2 − 1).
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Convolution and Linear Filtering

• B = A⊗ h

– “A is convolved with h to produce B”.

– “A is linearly filtered with h to produce B”.

• Of course using A⊗ h = h⊗A we can also say:

– “h is convolved with A to produce B”.

– “h is linearly filtered with A to produce B”.

• We can solve many interesting image processing problems by cleverly
choosing the “filter” h and filtering the image A.
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Example
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Example - contd.

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 6



The Fourier Transform of 2-D Sequences

We will now review the Fourier Transform of 2-D sequences.
Motivation:

• The convolution operation takes on a very special form in 2-D Fourier
transform “domain”.

• The 2-D Fourier transform of images will reveal interesting properties
that are shared by many images.

– This will allow us to distinguish natural images from “non-
images” (such as noise).

– We will be able to say what “kind” of linear filter is good for a
certain processing application.

• The effect of sampling operations are understood more clearly in 2-D
Fourier transform “domain”.

• This class will mostly discuss the required “tools”.
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Intuition - Orthogonal Coordinate Systems
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Definition

The 2-D Fourier Transform of a 2-D sequence A, F(A) is defined as:

F(A) = FA(w1, w2)

=
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)e−j(mw1+nw2) − π ≤ w1, w2 < π (2)

A can be recovered back from its transform FA(w1, w2)

via the inverse 2-D Fourier Transform F−1(A):

A(m,n) = F−1(A)

=
1

4π2

∫ π

−π

∫ π

−π
FA(w1, w2)e

+j(mw1+nw2)dw1dw2 (3)

• w1, w2 vary in a continuum, i.e., the interval [−π, π).

• ej(mw1+nw2) = cos(mw1 + nw2) + jsin(mw1 + nw2).

• A F↔ FA
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Intuition - contd.

Continuing with the previous intuition, consider the impulse representation
of 2-D sequences:

A(k, l) =
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)δ(m− k, n− l)

and their Fourier transforms:

FA(w1, w2) =
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)e−j(mw1+nw2)

These are actually the representations of the same sequence A in two or-
thogonal coordinate systems:

• The first coordinate system has basis “vectors” given by the
δ(m− k, n− l).

• The second coordinate system has basis “vectors” given by the e−j(mw1+nw2).

• The sums are inner or “scalar” products.
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Real-Complex Parts and Symmetry

• In general FA(w1, w2) is complex valued.

• Since we will be mainly be considering real 2-d sequences we can
note some symmetry properties by using the inverse Fourier transform
relationship.

A(m,n) =
1

4π2

∫ π

−π

∫ π

−π
FA(w1, w2)e

+j(mw1+nw2)dw1dw2

If A is real then:

FA(w1, w2) = F ∗
A(−w1,−w2) (4)

|FA(w1, w2)| = |FA(−w1,−w2)| (5)

6 FA(w1, w2) = − 6 FA(−w1,−w2) (6)

<(FA(w1, w2)) = <(FA(−w1,−w2)) (7)

=(FA(w1, w2)) = −=(FA(−w1,−w2)) (8)
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Periodicity

FA(w1, w2) =
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)e−j(mw1+nw2) − π ≤ w1, w2 < π

• FA(w1, w2) is periodic in w1, w2 with period 2π, i.e.,
for all integers k, l:

FA(w1 + k2π, w2 + l2π) = FA(w1, w2) (9)

To see this consider:

e−j(m(w1+k2π)+n(w2+l2π)) = e−j(mw1+nw2)e−jk2πe−jl2π

= e−j(mw1+nw2) ∀ integers k, l

• ej(mw1+nw2) = cos(mw1 + nw2) + jsin(mw1 + nw2).
w1, w2 the frequencies of the periodic trigonometric functions.
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Example
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Shifting and Modulation

• Shifting:

F(A(m−m0, n− n0)) =
+∞∑

m=−∞

+∞∑
n=−∞

A(m−m0, n− n0)e
−j(mw1+nw2)

=
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)e−j((k+m0)w1+(l+n0)w2)

= e−j(m0w1+n0w2)
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)e−j(kw1+lw2) (10)

A(m−m0, n− n0)
F↔ e−j(m0w1+n0w2)FA(w1, w2).

• Similarly, modulation:

ej(mw01+mw02)A(m,n) F↔ FA(w1 − w01, w2 − w02) (11)

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 14



Inner Product and Energy Conservation

• Conservation of the inner product:
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)B∗(m,n)

=
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)[
1

4π2

∫ π

−π

∫ π

−π
F ∗

B(w1, w2)e
−j(mw1+nw2)dw1dw2]

=
1

4π2

∫ π

−π

∫ π

−π
[

+∞∑
m=−∞

+∞∑
n=−∞

A(m,n)e−j(mw1+nw2)]F ∗
B(w1, w2)dw1dw2

=
1

4π2

∫ π

−π

∫ π

−π
FA(w1, w2)F

∗
B(w1, w2)dw1dw2 (12)

• Hence, energy conservation:
+∞∑

m=−∞

+∞∑
n=−∞

|A(m,n)|2 =
1

4π2

∫ π

−π

∫ π

−π
|FA(w1, w2)|2dw1dw2 (13)
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Convolution

• Let C = A⊗B.

C(m,n) =
+∞∑

k=−∞

+∞∑
k=−∞

A(k, l)B(m− k, n− l)

FC(w1, w2) =
+∞∑

k=−∞

+∞∑
k=−∞

A(k, l)
+∞∑

m=−∞

+∞∑
n=−∞

B(m− k, n− l)e−j(mw1+nw2)

=
+∞∑

k=−∞

+∞∑
k=−∞

A(k, l)FB(w1, w2)e
−j(kw1+lw2)

= FB(w1, w2)
+∞∑

k=−∞

+∞∑
k=−∞

A(k, l)e−j(kw1+lw2)

= FA(w1, w2)FB(w1, w2)

where we used the shifting property in the second step of the calcu-
lation. Thus we have the important result:

A⊗B F↔ FA(w1, w2)FB(w1, w2) (14)
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Multiplication

• A dual property to convolution property can be derived for multipli-
cation. Let C(m,n) = A(m,n)B(m,n).

F(C(m,n)) =
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)B(m,n)e−j(mw1+nw2)

=
+∞∑

m=−∞

+∞∑
n=−∞

A(m,n)[
1

4π2

∫ π

−π

∫ π

−π
FB(w′

1, w
′
2)e

j(mw′1+nw′2)dw′
1dw′

2]e
−j(mw1+nw2)

=
1

4π2

∫ π

−π

∫ π

−π
FB(w′

1, w
′
2)[

+∞∑
m=−∞

+∞∑
n=−∞

A(m,n)e−j(m(w1−w′1)+n(w2−w2′))]dw′
1dw′

2

=
1

4π2

∫ π

−π

∫ π

−π
FB(w′

1, w
′
2)FA(w1 − w′

1, w2 − w′
2)dw′

1dw′
2

Thus:

A(m,n)B(m,n) F↔ 1

4π2

∫ π

−π

∫ π

−π
FB(w′

1, w
′
2)FA(w1 − w′

1, w2 − w′
2)dw′

1dw′
2 (15)
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Delta Functions

• The Fourier transform of a Kronecker delta function:

Fδ(w1, w2) =
+∞∑

m=−∞

+∞∑
n=−∞

δ(m,n)e−j(mw1+nw2) (16)

= 1

• The Fourier transform of A(m,n) = 1 can be found via the Dirac delta
function:

1

4π2

∫ π

−π

∫ π

−π
δ(w1, w2)e

j(mw1+nw2)dw1dw2 =
1

4π2

⇒ A(m,n) = 1 F↔ 4π2
+∞∑

k=−∞

+∞∑
l=−∞

δ(w1 − k2π,w2 − l2π) (17)

where δ(w1, w2) is the Dirac delta function and we used the fact that
the Fourier transform has to be periodic with 2π.

• Note that δ(w1, w2) = 0 for w1, w2 6= 0 and
∫ +∞
−∞

∫ +∞
−∞ δ(w1, w2)dw1dw2 = 1 (18)
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comb(m,n)

• Consider the Kronecker comb function comb(m,n):
+∞∑

k=−∞

+∞∑
l=−∞

δ(m− kS1, n− lS2) (19)

where S1 > 0, S2 > 0 are integers.

• comb(m,n) is very useful when discussing sampling.
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comb(m,n) - contd.

The Fourier transform of a comb function can be computed as:

F(comb(m,n)) =
+∞∑

m=−∞

+∞∑
n=−∞

comb(m,n)e−j(mw1+nw2)

=
+∞∑

m=−∞

+∞∑
n=−∞

[
+∞∑

k=−∞

+∞∑
l=−∞

δ(m− kS1, n− lS2)]e
−j(mw1+nw2)

=
+∞∑

k=−∞

+∞∑
l=−∞

[
+∞∑

m=−∞

+∞∑
n=−∞

δ(m− kS1, n− lS2)e
−j(mw1+nw2)]

=
+∞∑

k=−∞

+∞∑
l=−∞

1 e−j(kS1w1+lS2w2)

=
+∞∑

m=−∞

+∞∑
n=−∞

1 e−j(mS1w1+nS2w2) (20)
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comb(m,n) - contd.

Note that Equation 20 is simply the Fourier transform of A(m,n) = 1 and
hence:

F(comb(m,n)) =
+∞∑

m=−∞

+∞∑
n=−∞

1 e−j(mS1w1+nS2w2)

= 4π2
+∞∑

k=−∞

+∞∑
l=−∞

δ(S1w1 − k2π, S2w2 − l2π)

=
4π2

S1S2

+∞∑
k=−∞

+∞∑
l=−∞

δ(w1 − k2π

S1
, w2 − l2π

S2
) (21)

where the last line follows since for any “regular” function G(w1, w2):

∫ +∞
−∞

∫ +∞
−∞ δ(S1w1 − k2π, S2w2 − l2π)G(w1, w2)dw1dw2 =

1

S1S2
G(k2π/S1, l2π/S2)

=
∫ +∞
−∞

∫ +∞
−∞

1

S1S2
δ(w1 − k2π

S1
, w2 − l2π

S2
)G(w1, w2)dw1dw2

and Dirac delta functions are defined by integrals.
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Fourier Transform Types

Let 0 < a1 < b1 < π and 0 < a2 < b2 < π.

• We will say that a Fourier transform FA(w1, w2) is low pass if |FA(w1, w2)| ∼
0 when a1 < |w1| < π and a2 < |w2| < π.

• We will say that a Fourier transform FA(w1, w2) is high pass if |FA(w1, w2)| ∼
0 when 0 < |w1| < a1 and 0 < |w2| < a2.

• Finally, we will say that a Fourier transform FA(w1, w2) is band pass if
|FA(w1, w2)| ∼ 0 when 0 < |w1| < a1, b1 < |w1| < π and 0 < |w2| < a2, b2 <

|w2| < π.
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Example - Low pass

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 23



Sampling and Aliasing

• Given a 2-D sequence A we would like to obtain a sequence C by
sub-sampling A:

C(m,n) = A(S1m,S2n) (22)

where S1, S2 > 0 are integers.

• We would like C to have close resemblance to A.

• For example given a 512× 512 image we would like to obtain a 256× 256

image by picking every other pixel in the original image.

• Things may go very wrong in sampling with unexpected effects.
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Example
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Fourier Transform of Sampled Sequence

B(m,n) = A(m,n)comb(m,n)

C(m,n) = B(S1m,S2n)

• First obtain the Fourier transform of B using the multiplication property:

FB(w1, w2) =
1

4π2

∫ π

−π

∫ π

−π
FA(w′

1, w
′
2)Fcomb(w1 − w′

1, w2 − w′
2)dw′

1dw′
2

=
1

4π2

∫ π

−π

∫ π

−π
FA(w′

1, w
′
2)[

4π2

S1S2

+∞∑
k=−∞

+∞∑
l=−∞

δ(w1 − w′
1 −

k2π

S1
, w2 − w′

2 −
l2π

S2
)]dw′

1dw′
2

=
+∞∑

k=−∞

+∞∑
l=−∞

1

S1S2

∫ π

−π

∫ π

−π
FA(w′

1, w
′
2)δ(w1 − w′

1 −
k2π

S1
, w2 − w′

2 −
l2π

S2
)dw′

1dw′
2

For w1, w2 ∈ [−π, π), let K(w1) = {k|w1 − k2π
S1

∈ [−π, π)} and L(w2) =

{l|w2 − l2π
S2
∈ [−π, π)}. Then:

FB(w1, w2) =
1

S1S2

∑

k∈K(w1)

∑

l∈L(w2)
FA(w1 − k2π

S1
, w2 − l2π

S2
) (23)
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Example

Suppose S1 = S2 = 2, i.e., we are sub-sampling by 2. Then for w1, w2 ∈ (−π, π),

K(w1) = {k|w1 − kπ ∈ (−π, π)} = {−1, 0, 1}
L(w2) = {l|w2 − lπ ∈ (−π, π)} = {−1, 0, 1}

and we have:

FB(w1, w2) =
1∑

k=−1

1∑

l=−1
FA(w1 − kπ, w2 − lπ) (24)

• If during this process there is overlapping, i.e., say
(FB(w1, w2)− FA(w1, w2))FA(w1, w2) 6= 0 then we will say that there is
aliasing in the sub-sampling operation.
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Example - contd.
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F-T of Sampled Sequence - contd.

Going back to the transform we were calculating:

• We can now obtain FC(w1, w2)

FC(w1, w2) =
+∞∑

m=−∞

+∞∑
n=−∞

B(S1m,S2n)e−j(mw1+nw2)

=
∑

m=...,−S1,0,S1,...

∑

n=...,−S2,0,S2,...
B(m,n)e−j(mw1/S1+nw2/S2)

= FB(w1/S1, w2/S2)

=
1

S1S2

∑

k∈K(w1)

∑

l∈L(w2)
FA(

w1

S1
− k2π

S1
,
w2

S2
− l2π

S2
) (25)
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Example - contd.
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Aliasing

• It is clear that unless we are careful, the sampled signal can be very
different from the original.

• For no aliasing to occur after sampling FA(w1, w2) must be:

FA(w1, w2) = 0,
π

S1
< |w1| < π,

π

S2
< |w2| < π (26)

so that there is no overlap.

• But what if there is?

– Then we have to low-pass filter A to make sure things become
conformant to the above.

– Such a low-pass filter is called an antialiasing filter.
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Summary

• In this lecture we learnt the equivalence between
convolution and linear filtering.

• We reviewed two dimensional Fourier transforms of 2-d sequences.

• We discussed various properties of Fourier transforms and in particular
we saw that the Fourier transform “converts” convolution to multi-
plication.

• Using the Fourier transform properties of Kronecker and Dirac
delta functions we learnt about sampling and aliasing.
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Homework VI

1. Show the modulation property of the Fourier transform.

2. Show that if a two dimensional sequence is separable then so is its Fourier transform, i.e., if

A(m,n) = A1(m)A2(n) then FA(w1, w2) = FA1
(w1)FA2

(w2) where FA1
(w1), FA2

(w2) are one di-

mensional Fourier transforms such as Fa(w) =
1

2π

+∞∑

n=−∞
a(n)e−jwn.

3. Obtain the Fourier transform of the 2-D sequence A(m,n) given by:

n = 0 1 2

m = 0 1 2 −1

1 2 4 −2

2 −1 −2 1

Simplify your answer as much as possible.

4. Calculate the Fourier transform of the limited extent sequence A(m,n) = 1, 0 ≤ m < 8, 0 ≤ n < 8

and A(m,n) = 0 otherwise.

5. Calculate the Fourier transform of the limited extent sequence A(m,n) = (−1)m+n, 0 ≤ m <

8, 0 ≤ n < 8 and A(m,n) = 0 otherwise.

6. Based on the two items above, find the Fourier transform of the checkerboard image(D(m, n)).

(Hint: Assume gray=2, black=0). For sampling with S1 = S2 = 2 show that there is aliasing.

Calculate the Fourier transform of the sub-sampled sequence C(m,n) = D(S1m,S2n). (Do this

by using the FD(w1, w2). Take the inverse transform and verify with direct sub-sampling in the

“sequence domain”.
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7. Find the periodicity of FB(w1, w2) and FC(w1, w2) as obtained in sampling and aliasing slides.

Draw a figure showing both the aliasing and periodicity involved in FB(w1, w2), FC(w1, w2). Take

FA(w1, w2) of the original sequence and S1, S2 anything you like as long as there is antialiasing.

Do a better job than I did.
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