

Summary of Lecture 5

- In lecture 5 we learnt how to pick the reproduction levels for thresholds.
- We learnt how to design MSQE optimal (Lloyd-Max) quar
- We reviewed linear systems, linear shift invariant systems a the convolution sum.

LSI Systems and Convolution

 S is a linear shift invariant system with input-output relationship

$$
\mathcal{H}(A(i,j)) = \mathcal{H}(\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)\delta(i-k,j-l))
$$

=
$$
\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)\mathcal{H}(\delta(i-k,j-l))
$$

 $h(i, j) = H(\delta(i, j))$ the impulse response of the system S.

$$
\mathcal{H}(\delta(i-k,j-l)) = h(i-k,j-l)
$$

$$
\mathcal{H}(A(i,j)) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)h(i-k,j-l)
$$

which is the the convolution sum.

• Everything about the LSI system S is "in" $h(i, j)$.

Convolution

 $\mathbf{B} = \mathbf{A} \otimes \mathbf{h}$

$$
B(i,j) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)h(i-k,j-l)
$$

Properties:

- \bullet $\mathbf{A}\otimes\mathbf{h}=\mathbf{h}\otimes\mathbf{A}$.
- $A \otimes \delta = A$.
- Finite extent $2 D$ sequences A $(N_1 \times M_1)$, h $(N_2 \times M_2)$: (for e.g., $A(i, j) \neq 0$, $0 \leq i \leq N_1 - 1$, $0 \leq j \leq M_1 - 1$, etc.) $-{\bf C} = {\bf A} \otimes {\bf h}$ is $(N_1 + N_2 - 1) \times (M_1 + M_2 - 1)$.

Convolution and Linear Filtering

- \bullet $\mathbf{B} = \mathbf{A} \otimes \mathbf{h}$
	- $-$ "A is convolved with h to produce B".
	- $-$ "A is linearly filtered with h to produce B".
- Of course using $A \otimes h = h \otimes A$ we can also say:
	- $-$ "h is convolved with A to produce B".
	- $-$ "h is linearly filtered with A to produce B".
- We can solve many interesting image processing problems choosing the "filter" h and filtering the image A.

Example

A

image((C>T)*255) (T=25)

C=abs(A ⊗ h) (normalized)

Example - contd.

A ⊗ g (normalized)

The Fourier Transform of 2-D Sequences

We will now review the Fourier Transform of 2-D sequences. Motivation:

- The convolution operation takes on a very special form in 2 transform "domain".
- The 2-D Fourier transform of images will reveal interesting that are shared by many images.
	- $-$ This will allow us to distinguish natural images from images" (such as noise).
	- $-$ We will be able to say what "kind" of linear filter is certain processing application.
- The effect of sampling operations are understood more clearly Fourier transform "domain".
- This class will mostly discuss the required "tools".

Definition

The 2-D Fourier Transform of a 2-D sequence A, $\mathcal{F}(A)$ is defined

$$
\mathcal{F}(\mathbf{A}) = F_A(w_1, w_2)
$$

=
$$
\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)} - \pi \leq w_1, w_2 < \pi
$$

A can be recovered back from its transform $F_A(w_1, w_2)$ via the inverse 2-D Fourier Transform $\mathcal{F}^{-1}(\mathbf{A})$:

$$
A(m, n) = \mathcal{F}^{-1}(\mathbf{A})
$$

=
$$
\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1, w_2) e^{+j(mw_1 + nw_2)} dw_1 dw_2
$$

- w_1 , w_2 vary in a continuum, i.e., the interval $[-\pi, \pi)$.
- $e^{j(mw_1+nw_2)} = cos(mw_1+nw_2) + jsin(mw_1+nw_2)$.
- \bullet A $\stackrel{\mathcal{F}}{\leftrightarrow}$ F_A

Intuition - contd.

Continuing with the previous intuition, consider the impulse representation. of 2-D sequences:

$$
A(k,l) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)\delta(m-k,n-l)
$$

and their Fourier transforms:

$$
F_A(w_1, w_2) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)}
$$

These are actually the representations of the same sequence A thogonal coordinate systems:

- The first coordinate system has basis "vectors" given by the $\delta(m-k,n-l)$.
- The second coordinate system has basis "vectors" given by t
- The sums are inner or "scalar" products.

Real-Complex Parts and Symmetry

- In general $F_A(w_1, w_2)$ is complex valued.
- Since we will be mainly be considering real 2-d sequenc note some symmetry properties by using the inverse Fourier relationship.

$$
A(m,n) = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1, w_2) e^{+j(mw_1 + nw_2)} dw_1 dw_2
$$

If A is real then:

$$
F_A(w_1, w_2) = F_A^*(-w_1, -w_2)
$$

\n
$$
|F_A(w_1, w_2)| = |F_A(-w_1, -w_2)|
$$

\n
$$
\angle F_A(w_1, w_2) = -\angle F_A(-w_1, -w_2)
$$

\n
$$
\Re(F_A(w_1, w_2)) = \Re(F_A(-w_1, -w_2))
$$

\n
$$
\Im(F_A(w_1, w_2)) = -\Im(F_A(-w_1, -w_2))
$$

Periodicity

$$
F_A(w_1, w_2) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)} \qquad -\pi \le w_1, w_2 < \pi
$$

• $F_A(w_1, w_2)$ is periodic in w_1, w_2 with period 2π , i.e., for all integers k, l :

$$
F_A(w_1 + k2\pi, w_2 + l2\pi) = F_A(w_1, w_2)
$$

To see this consider:

$$
e^{-j(m(w_1+k2\pi) + n(w_2+l2\pi))} = e^{-j(mw_1+nw_2)}e^{-jk2\pi}e^{-jl2\pi}
$$

=
$$
e^{-j(mw_1+nw_2)} \quad \forall \text{ integers } k, l
$$

• $e^{j(mw_1+nw_2)} = cos(mw_1+nw_2) + jsin(mw_1+nw_2)$.

 w_1, w_2 the frequencies of the periodic trigonometric function

Example

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Shifting and Modulation

• Shifting:

$$
\mathcal{F}(A(m - m_0, n - n_0)) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} A(m - m_0, n - n_0) e^{-j(mu)}
$$

=
$$
\sum_{k = -\infty}^{+\infty} \sum_{l = -\infty}^{+\infty} A(k, l) e^{-j((k+m_0)w_1 + (l+n_0)w_2)}
$$

=
$$
e^{-j(m_0w_1 + n_0w_2)} \sum_{k = -\infty}^{+\infty} \sum_{l = -\infty}^{+\infty} A(k, l) e^{-j(ku)}
$$

 $A(m - m_0, n - n_0) \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j(m_0w_1 + n_0w_2)} F_A(w_1, w_2).$

• Similarly, modulation:

$$
e^{j(mw_{01}+mw_{02})}A(m,n)\overset{\mathcal{F}}{\leftrightarrow} F_A(w_1-w_{01},w_2-w_{02})
$$

Inner Product and Energy Conservation

• Conservation of the inner product:

$$
\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) B^*(m, n)
$$
\n
$$
= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) [\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B^*(w_1, w_2) e^{-j(mw_1 + nw_2)} dw_1
$$
\n
$$
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} [\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)}] F_B^*(w_1, w_2) dw_1
$$
\n
$$
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1, w_2) F_B^*(w_1, w_2) dw_1 dw_2
$$

• Hence, energy conservation:

$$
\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} |A(m,n)|^2 = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |F_A(w_1,w_2)|^2 dw_1 dw_2
$$

Convolution

• Let
$$
\mathbf{C} = \mathbf{A} \otimes \mathbf{B}
$$
.
\n
$$
C(m, n) = \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k, l)B(m - k, n - l)
$$
\n
$$
F_C(w_1, w_2) = \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k, l) \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} B(m - k, n - l)e^{-j(n}
$$
\n
$$
= \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k, l)F_B(w_1, w_2)e^{-j(kw_1 + lw_2)}
$$
\n
$$
= F_B(w_1, w_2) \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k, l)e^{-j(kw_1 + lw_2)}
$$
\n
$$
= F_A(w_1, w_2)F_B(w_1, w_2)
$$

where we used the shifting property in the second step of lation. Thus we have the important result:

$$
\mathbf{A} \otimes \mathbf{B} \stackrel{\mathcal{F}}{\leftrightarrow} F_A(w_1,w_2)F_B(w_1,w_2)
$$

[Multiplication](#page-8-0)

• A dual property to convolution property can be derived for cation. Let $C(m, n) = A(m, n)B(m, n)$.

$$
\mathcal{F}(C(m,n)) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)B(m,n)e^{-j(mw_1+nw_2)}
$$

\n
$$
= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)[\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w'_1, w'_2)e^{j(mw'_1+nw'_2)} dw'_1 dw'_2]e^{-\frac{1}{4\pi^2}} \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w'_1, w'_2)[\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)e^{-j(m(w_1-w'_1)+n(w_2-w_2'))}]
$$

\n
$$
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w'_1, w'_2)F_A(w_1-w'_1, w_2-w'_2)dw'_1 dw'_2
$$

Thus:

$$
A(m, n)B(m, n) \stackrel{\mathcal{F}}{\leftrightarrow} \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w_1', w_2') F_A(w_1 - w_1', w_2 - w_2') dw
$$

Delta Functions

• The Fourier transform of a Kronecker delta function:

$$
F_{\delta}(w_1, w_2) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \delta(m, n) e^{-j(mw_1 + nw_2)}
$$

= 1

• The Fourier transform of $A(m, n) = 1$ [can](#page-11-0) be found via the I function:

$$
\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \delta(w_1, w_2) e^{j(mw_1 + nw_2)} dw_1 dw_2 = \frac{1}{4\pi^2}
$$

\n
$$
\Rightarrow A(m, n) = 1 \stackrel{\mathcal{F}}{\leftrightarrow} 4\pi^2 \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(w_1 - k2\pi, w_2 - l2\pi)
$$

where $\delta(w_1, w_2)$ is the Dirac delta function and we used the the Fourier transform has to be periodic with 2π .

• Note that $\delta(w_1, w_2) = 0$ for $w_1, w_2 \neq 0$ and

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(w_1, w_2) dw_1 dw_2 = 1
$$

comb(m,n)

 \bullet Consider the Kronecker comb function $\mathit{comb}(m,n)$:

$$
\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(m - kS_1, n - lS_2)
$$

where $S_1 > 0$, $S_2 > 0$ are integers.

 \bullet $comb(m,n)$ is very useful when discussing sampling.

comb(m,n) - contd.

The Fourier transform of a comb function can be computed as:

F(comb(m, n)) = + X ∞ m=−∞ + X ∞ n=−∞ comb(m, n)e −j(mw1+nw2) = + X ∞ m=−∞ + X ∞ n=−∞ [+ X ∞ k=−∞ + X ∞ l=−∞ δ(m − kS1, n − lS2)]e −j(mw1+nw2) = + X ∞ k=−∞ + X ∞ l=−∞ [+ X ∞ m=−∞ + X ∞ n=−∞ δ(m − kS1, n − lS2)e −j(mw1+nw2) = + X ∞ k=−∞ + X ∞ l=−∞ 1 e −j(kS1w1+lS2w2) = + X ∞ m=−∞ + X ∞ n=−∞ 1 e −j(mS1w1+nS2w2)

comb(m,n) - contd.

Note that Equation 20 is simply the Fourier transform of $A(m, n)$ hence:

$$
\mathcal{F}(comb(m, n)) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} 1 e^{-j(mS_1w_1 + nS_2w_2)}
$$

= $4\pi^2 \sum_{k = -\infty}^{+\infty} \sum_{l = -\infty}^{+\infty} \delta(S_1w_1 - k2\pi, S_2w_2 - l2\pi)$
= $\frac{4\pi^2}{S_1S_2} \sum_{k = -\infty}^{+\infty} \sum_{l = -\infty}^{+\infty} \delta(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2})$

where the last line follows since for any "regular" function $G(w_1, w_2)$:

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(S_1 w_1 - k2\pi, S_2 w_2 - l2\pi) G(w_1, w_2) dw_1 dw_2 = \frac{1}{S_1 S_2} G(k2\pi / S_1, l2\pi / S_2)
$$

=
$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{S_1 S_2} \delta(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2}) G(w_1, w_2) dw_1 dw_2
$$

and Dirac delta functions are defined by integrals.

Fourier Transform Types

Let $0 < a_1 < b_1 < \pi$ and $0 < a_2 < b_2 < \pi$.

- We will say that a Fourier transform $F_A(w_1, w_2)$ is low pass if $|I|$ 0 when $a_1 < |w_1| < \pi$ and $a_2 < |w_2| < \pi$.
- We will say that a Fourier transform $F_A(w_1, w_2)$ is high pass if 0 when $0 < |w_1| < a_1$ and $0 < |w_2| < a_2$.
- Finally, we will say that a Fourier transform $F_A(w_1, w_2)$ is band $|F_A(w_1, w_2)| \sim 0$ when $0 < |w_1| < a_1$, $b_1 < |w_1| < \pi$ and $0 < |w_2|$ $|w_2| < \pi$.

Example - Low pass

Sampling and Aliasing

• Given a 2-D sequence A we would like to obtain a sequence sub-sampling A:

$$
C(m, n) = A(S_1 m, S_2 n)
$$

where $S_1, S_2 > 0$ are integers.

- We would like C to have close resemblance to A.
- For example given a 512×512 image we would like to obtain image by picking every other pixel in the original image.
- Things may go very wrong in sampling with unexpected ef

Example

Original image (8x8)

Two possible 4x4 sub-sa images

Fourier Transform of Sampled Sequence

$$
B(m, n) = A(m, n) comb(m, n)
$$

$$
C(m, n) = B(S_1m, S_2n)
$$

• First obtain the Fourier transform of B using the multiplicati

$$
F_B(w_1, w_2) = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') F_{comb}(w_1 - w_1', w_2 - w_2') dw_1' dw
$$

\n
$$
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') \left[\frac{4\pi^2}{S_1 S_2} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(w_1 - w_1' - \frac{k2\pi}{S_1}, w_2 - w_2' - \frac{k2\pi}{S_2}) \right]
$$

\n
$$
= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \frac{1}{S_1 S_2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') \delta(w_1 - w_1' - \frac{k2\pi}{S_1}, w_2 - w_2' - \frac{l2\pi}{S_2})
$$

For $w_1, w_2 \in [-\pi, \pi)$, let $K(w_1) = \{k | w_1 - \frac{k2\pi}{S_1}\}$ $\frac{c2\pi}{S_1} \in [-\pi,\pi)$ } ar $\{l|w_2 - \frac{l2\pi}{S_2}\}$ $\frac{d2\pi}{S_2} \in [-\pi,\pi) \}$. Then:

$$
F_B(w_1, w_2) = \frac{1}{S_1 S_2} \sum_{k \in K(w_1)} \sum_{l \in L(w_2)} F_A(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2})
$$

Example

Suppose $S_1 = S_2 = 2$, i.e., we are sub-sampling by 2. Then for w_1, w_2

$$
K(w_1) = \{k|w_1 - k\pi \in (-\pi, \pi)\} = \{-1, 0, 1\}
$$

$$
L(w_2) = \{l|w_2 - l\pi \in (-\pi, \pi)\} = \{-1, 0, 1\}
$$

and we have:

$$
F_B(w_1, w_2) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} F_A(w_1 - k\pi, w_2 - l\pi)
$$

• If during this process there is overlapping, i.e., say $(F_B(w_1, w_2) - F_A(w_1, w_2))F_A(w_1, w_2) \neq 0$ then we will say that the aliasing in the sub-sampling operation.

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

F-T of Sampled Sequence - contd.

Going back to the transform we were calculating:

• We can now obtain $F_C(w_1, w_2)$

$$
F_C(w_1, w_2) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} B(S_1 m, S_2 n) e^{-j(mw_1 + nw_2)}
$$

=
$$
\sum_{m=-\infty, -S_1, 0, S_1, \dots} \sum_{n=-\infty, -S_2, 0, S_2, \dots} B(m, n) e^{-j(mw_1/S_1 + nu_2)}
$$

=
$$
F_B(w_1/S_1, w_2/S_2)
$$

=
$$
\frac{1}{S_1 S_2} \sum_{k \in K(w_1)} \sum_{l \in L(w_2)} F_A(\frac{w_1}{S_1} - \frac{k2\pi}{S_1}, \frac{w_2}{S_2} - \frac{l2\pi}{S_2})
$$

Example - contd.

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Aliasing

- \bullet It is clear that unless we are careful, the sampled signal can different from the original.
- For no aliasing to occur after sampling $F_A(w_1, w_2)$ must be:

$$
F_A(w_1, w_2) = 0, \ \frac{\pi}{S_1} < |w_1| < \pi, \ \frac{\pi}{S_2} < |w_2| < \pi
$$

so that there is no overlap.

- But what if there is?
	- Then we have to low-pass filter A to make sure thin conformant to the above.
	- Such a low-pass filter is called an antialiasing filter.

Summary

- In this lecture we learnt the eq[uivalence between](#page-23-0) [convolution and](#page-17-0) linear filtering.
- We reviewed two dimensional Fourier transforms of 2-d sequences.
- We discussed various properties of Fourier transforms and in we saw that the Fourier transform "converts" convolution plication.
- Using the Fourier transform properties of Kronecker and D delta functions we learnt about sampling and aliasing.

Homework VI

- 1. Show the modulation property of the Fourier transform.
- 2. Show that if a two dimensional sequence is separable then so is its Fourier tra $A(m,n) = A_1(m)A_2(n)$ then $F_A(w_1, w_2) = F_{A_1}(w_1)F_{A_2}(w_2)$ where $F_{A_1}(w_1)F_{A_2}(w_2)$ mensional Fourier transforms such as $F_a(w) = \frac{1}{2\pi}$ 2π $+\infty$ $n=-\infty$ $a(n)e^{-jwn}$.
- 3. Obtain the Fourier transform of the 2-D sequence $A(m, n)$ given by:

Simplify your answer as m[uch as possib](#page-23-0)le.

- 4. Calculate the Fourier transform of the limited extent sequence $A(m, n) = 1, 0 \leq m$ and $A(m, n) = 0$ otherwise.
- 5. Calculate the Fourier transform of the limited extent sequence $A(m, n) = (-1)^n$ $8, 0 \leq n < 8$ and $A(m, n) = 0$ otherwise.
- 6. Based on the two items above, find the Fourier transform of the checkerboard in (Hint: Assume gray=2, black=0). For sampling with $S_1 = S_2 = 2$ show that the Calculate the Fourier transform of the sub-sampled sequence $C(m, n) = D(S_1m,$ by using the $F_D(w_1, w_2)$. Take the inverse transform and verify with direct sub-s "sequence domain".

7. Find the periodicity of $F_B(w_1, w_2)$ and $F_C(w_1, w_2)$ as obtained in sampling and Draw a figure showing *both* the aliasing and periodicity involved in $F_B(w_1, w_2)$, $F_C(w_1, w_2)$ $F_A(w_1, w_2)$ of the original sequence and S_1, S_2 anything you like as long as there Do a better job than I did.

References

[1] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.