

- In lecture 5 we learnt how to pick the reproduction levels for the given thresholds.
- We learnt how to design MSQE optimal (Lloyd-Max) quantizers.
- We reviewed linear systems, linear shift invariant systems and the convolution sum.

 \mathcal{S} is a linear shift invariant system with input-output relationship \mathcal{H} .

$$\mathcal{H}(A(i,j)) = \mathcal{H}(\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)\delta(i-k,j-l))$$
$$= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)\mathcal{H}(\delta(i-k,j-l))$$

 $h(i,j) = \mathcal{H}(\delta(i,j))$ the impulse response of the system \mathcal{S} .

$$\begin{aligned} \mathcal{H}(\delta(i-k,j-l)) &= h(i-k,j-l) \\ \mathcal{H}(A(i,j)) &= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)h(i-k,j-l) \end{aligned}$$

which is the the convolution sum.

• Everything about the LSI system \mathcal{S} is "in" h(i, j).

Convolution

$$\mathbf{B} = \mathbf{A} \otimes \mathbf{h}$$
:

$$B(i,j) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l)h(i-k,j-l)$$

$$\tag{1}$$

Properties:

- $\mathbf{A} \otimes \mathbf{h} = \mathbf{h} \otimes \mathbf{A}$.
- $\mathbf{A} \otimes \delta = \mathbf{A}$.
- Finite extent 2 D sequences A $(N_1 \times M_1)$, h $(N_2 \times M_2)$: (for e.g., $A(i,j) \neq 0$, $0 \le i \le N_1 - 1$, $0 \le j \le M_1 - 1$, etc.)

 $-\mathbf{C} = \mathbf{A} \otimes \mathbf{h} \text{ is } (N_1 + N_2 - 1) \times (M_1 + M_2 - 1).$

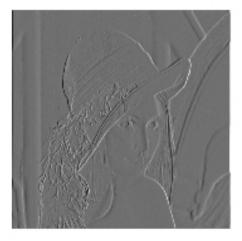
Convolution and Linear Filtering

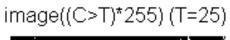
- $\bullet \ \mathbf{B} = \mathbf{A} \otimes \mathbf{h}$
 - "A is convolved with ${\bf h}$ to produce ${\bf B}$ ".
 - "A is linearly filtered with h to produce B".
- \bullet Of course using $\mathbf{A}\otimes \mathbf{h}=\mathbf{h}\otimes \mathbf{A}$ we can also say:
 - "h is convolved with A to produce \mathbf{B} ".
 - "h is linearly filtered with A to produce B".
- We can solve many interesting image processing problems by cleverly choosing the "filter" h and filtering the image A.

Example

C=abs(A ⊗ h) (normalized)

B=A ⊗ h (normalized)





© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Example - contd.

B=A+100*randn(512,512) (normalized)



A ⊗ g (normalized)

B⊗g (normalized)

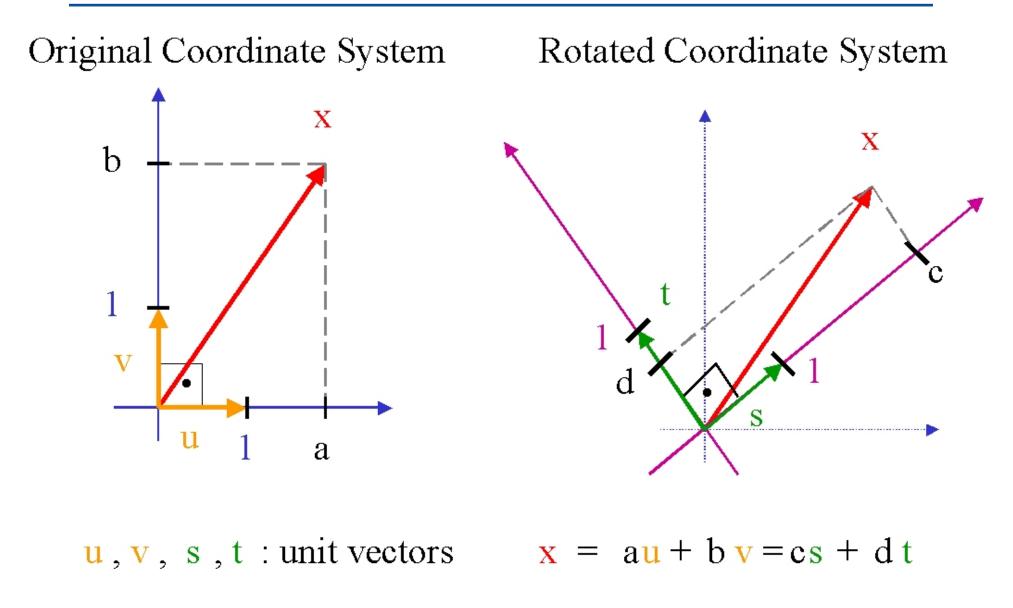
We will now review the Fourier Transform of 2-D sequences. Motivation:

- The convolution operation takes on a very special form in 2-D Fourier transform "domain".
- The 2-D Fourier transform of images will reveal interesting properties that are shared by many images.
 - This will allow us to distinguish natural images from "nonimages" (such as noise).
 - We will be able to say what "kind" of linear filter is good for a certain processing application.

7

- The effect of sampling operations are understood more clearly in 2-D Fourier transform "domain".
- This class will mostly discuss the required "tools".

Intuition - Orthogonal Coordinate Systems



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Definition

The 2-D Fourier Transform of a 2-D sequence A, $\mathcal{F}(\mathbf{A})$ is defined as:

$$\mathcal{F}(\mathbf{A}) = F_A(w_1, w_2) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)} - \pi \le w_1, w_2 < \pi$$
(2)

A can be *recovered* back from its transform $F_A(w_1, w_2)$ via the inverse 2-D Fourier Transform $\mathcal{F}^{-1}(\mathbf{A})$:

$$A(m,n) = \mathcal{F}^{-1}(\mathbf{A}) = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1, w_2) e^{+j(mw_1 + nw_2)} dw_1 dw_2$$
(3)

- w_1 , w_2 vary in a continuum, i.e., the interval $[-\pi,\pi)$.
- $e^{j(mw_1+nw_2)} = cos(mw_1+nw_2) + jsin(mw_1+nw_2).$
- $\mathbf{A} \stackrel{\mathcal{F}}{\leftrightarrow} F_A$

Continuing with the previous intuition, consider the impulse representation of 2-D sequences:

$$A(k,l) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)\delta(m-k,n-l)$$

and their Fourier transforms:

$$F_A(w_1, w_2) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)}$$

These are actually the representations of the same sequence \mathbf{A} in two orthogonal coordinate systems:

- The first coordinate system has basis "vectors" given by the $\delta(m-k,n-l)$.
- The second coordinate system has basis "vectors" given by the $e^{-j(mw_1+nw_2)}$.
- The sums are inner or "scalar" products.

Real-Complex Parts and Symmetry

- In general $F_A(w_1, w_2)$ is complex valued.
- Since we will be mainly be considering real 2-d sequences we can note some symmetry properties by using the inverse Fourier transform relationship.

$$A(m,n) = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1, w_2) e^{+j(mw_1 + nw_2)} dw_1 dw_2$$

If A is real then:

$$F_A(w_1, w_2) = F_A^*(-w_1, -w_2)$$
(4)

$$|F_A(w_1, w_2)| = |F_A(-w_1, -w_2)|$$
(5)

$$\angle F_A(w_1, w_2) = -\angle F_A(-w_1, -w_2)$$
 (6)

$$\Re(F_A(w_1, w_2)) = \Re(F_A(-w_1, -w_2))$$
(7)

$$\Im(F_A(w_1, w_2)) = -\Im(F_A(-w_1, -w_2)) \tag{8}$$

Periodicity

$$F_A(w_1, w_2) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} A(m, n) e^{-j(mw_1 + nw_2)} \qquad -\pi \le w_1, w_2 < \pi$$

• $F_A(w_1, w_2)$ is periodic in w_1, w_2 with period 2π , i.e., for all integers k, l:

$$F_A(w_1 + k2\pi, w_2 + l2\pi) = F_A(w_1, w_2)$$
(9)

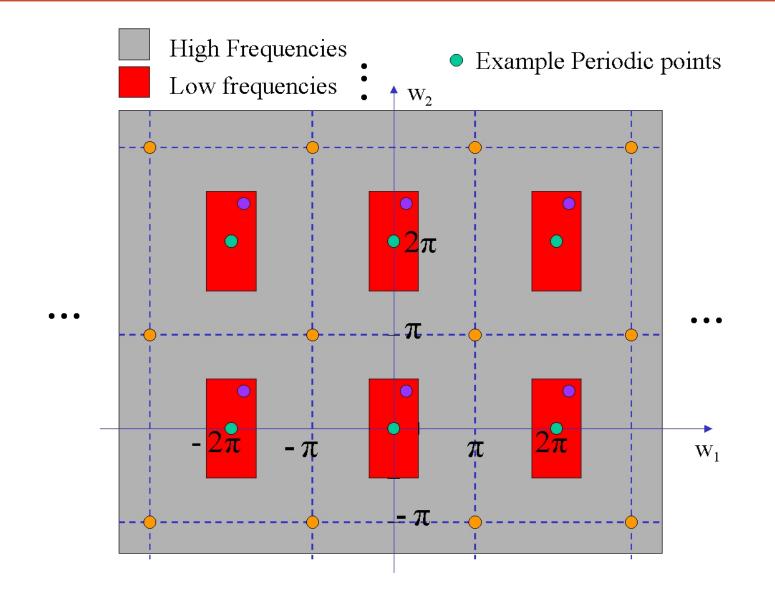
To see this consider:

$$e^{-j(m(w_1+k2\pi)+n(w_2+l2\pi))} = e^{-j(mw_1+nw_2)}e^{-jk2\pi}e^{-jl2\pi}$$

= $e^{-j(mw_1+nw_2)} \forall$ integers k, l

• $e^{j(mw_1+nw_2)} = cos(mw_1 + nw_2) + jsin(mw_1 + nw_2)$. w_1, w_2 the frequencies of the periodic trigonometric functions.

Example



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 13

Shifting and Modulation

• Shifting:

$$\mathcal{F}(A(m-m_0, n-n_0)) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m-m_0, n-n_0) e^{-j(mw_1+nw_2)}$$

$$= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l) e^{-j((k+m_0)w_1+(l+n_0)w_2)}$$

$$= e^{-j(m_0w_1+n_0w_2)} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} A(k,l) e^{-j(kw_1+lw_2)}$$
(10)

$$A(m-m_0, n-n_0) \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j(m_0w_1+n_0w_2)} F_A(w_1, w_2).$$

• Similarly, modulation:

$$e^{j(mw_{01}+mw_{02})}A(m,n) \stackrel{\mathcal{F}}{\leftrightarrow} F_A(w_1-w_{01},w_2-w_{02}) \tag{11}$$

• Conservation of the inner product:

$$\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)B^{*}(m,n)$$

$$= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n) \left[\frac{1}{4\pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_{B}^{*}(w_{1},w_{2})e^{-j(mw_{1}+nw_{2})}dw_{1}dw_{2}\right]$$

$$= \frac{1}{4\pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)e^{-j(mw_{1}+nw_{2})}\right] F_{B}^{*}(w_{1},w_{2})dw_{1}dw_{2}$$

$$= \frac{1}{4\pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_{A}(w_{1},w_{2})F_{B}^{*}(w_{1},w_{2})dw_{1}dw_{2} \qquad (12)$$

• Hence, energy conservation:

$$\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} |A(m,n)|^2 = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |F_A(w_1,w_2)|^2 dw_1 dw_2$$
(13)

Convolution

• Let
$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B}$$
.

$$C(m,n) = \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k,l)B(m-k,n-l)$$

$$F_{C}(w_{1},w_{2}) = \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k,l) \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} B(m-k,n-l)e^{-j(mw_{1}+nw_{2})}$$

$$= \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k,l)F_{B}(w_{1},w_{2})e^{-j(kw_{1}+lw_{2})}$$

$$= F_{B}(w_{1},w_{2}) \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} A(k,l)e^{-j(kw_{1}+lw_{2})}$$

$$= F_{A}(w_{1},w_{2})F_{B}(w_{1},w_{2})$$

where we used the shifting property in the second step of the calculation. Thus we have the important result:

$$\mathbf{A} \otimes \mathbf{B} \stackrel{\mathcal{F}}{\leftrightarrow} F_A(w_1, w_2) F_B(w_1, w_2) \tag{14}$$

• A dual property to convolution property can be derived for multiplication. Let C(m, n) = A(m, n)B(m, n).

$$\begin{aligned} \mathcal{F}(C(m,n)) &= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n)B(m,n)e^{-j(mw_1+nw_2)} \\ &= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n) \left[\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w_1',w_2') e^{j(mw_1'+nw_2')} dw_1' dw_2' \right] e^{-j(mw_1+nw_2)} \\ &= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w_1',w_2') \left[\sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} A(m,n) e^{-j(m(w_1-w_1')+n(w_2-w_2'))} \right] dw_1' dw_2' \\ &= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w_1',w_2') F_A(w_1-w_1',w_2-w_2') dw_1' dw_2' \end{aligned}$$

Thus:

$$A(m,n)B(m,n) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_B(w_1',w_2')F_A(w_1 - w_1',w_2 - w_2')dw_1'dw_2'$$
(15)

Delta Functions

• The Fourier transform of a Kronecker delta function:

$$F_{\delta}(w_1, w_2) = \sum_{m = -\infty}^{+\infty} \sum_{n = -\infty}^{+\infty} \delta(m, n) e^{-j(mw_1 + nw_2)}$$

$$= 1$$
(16)

• The Fourier transform of A(m,n) = 1 can be found via the Dirac delta function:

$$\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \delta(w_1, w_2) e^{j(mw_1 + nw_2)} dw_1 dw_2 = \frac{1}{4\pi^2}$$

$$\Rightarrow A(m, n) = 1 \stackrel{\mathcal{F}}{\leftrightarrow} 4\pi^2 \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(w_1 - k2\pi, w_2 - l2\pi)$$
(17)

where $\delta(w_1, w_2)$ is the Dirac delta function and we used the fact that the Fourier transform has to be periodic with 2π .

• Note that $\delta(w_1, w_2) = 0$ for $w_1, w_2 \neq 0$ and

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(w_1, w_2) dw_1 dw_2 = 1$$
 (18)

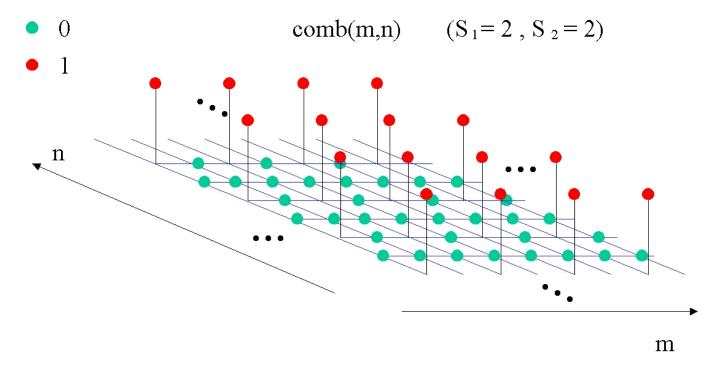
comb(m,n)

• Consider the Kronecker comb function comb(m, n):

$$\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(m - kS_1, n - lS_2)$$
(19)

where $S_1 > 0$, $S_2 > 0$ are integers.

• comb(m, n) is very useful when discussing sampling.



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 19

comb(m,n) - contd.

The Fourier transform of a comb function can be computed as:

$$\mathcal{F}(comb(m,n)) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} comb(m,n)e^{-j(mw_1+nw_2)}$$

$$= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left[\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(m-kS_1, n-lS_2) \right]e^{-j(mw_1+nw_2)}$$

$$= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \delta(m-kS_1, n-lS_2)e^{-j(mw_1+nw_2)}$$

$$= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} 1 e^{-j(kS_1w_1+lS_2w_2)}$$

$$= \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} 1 e^{-j(mS_1w_1+nS_2w_2)}$$
(20)

comb(m,n) - contd.

Note that Equation 20 is simply the Fourier transform of A(m,n) = 1 and hence:

$$\mathcal{F}(comb(m,n)) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} 1 e^{-j(mS_1w_1 + nS_2w_2)}$$

= $4\pi^2 \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(S_1w_1 - k2\pi, S_2w_2 - l2\pi)$
= $\frac{4\pi^2}{S_1S_2} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2})$ (21)

where the last line follows since for any "regular" function $G(w_1, w_2)$:

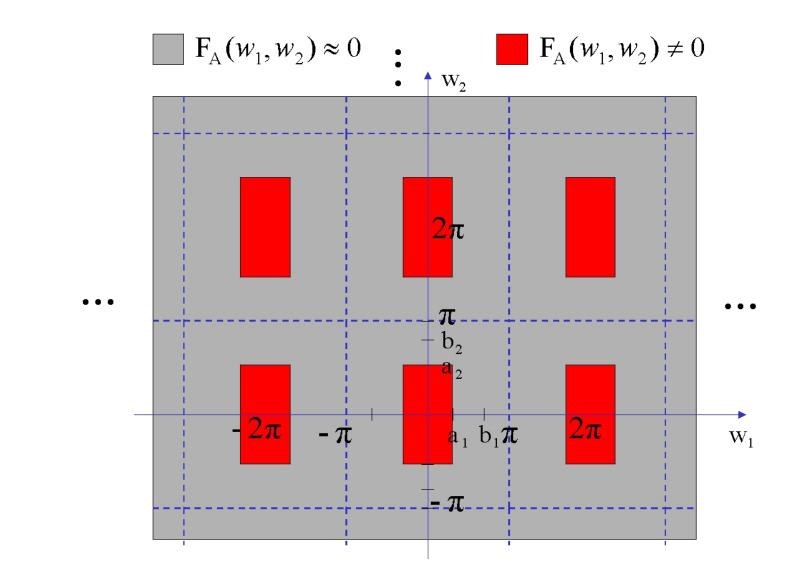
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(S_1 w_1 - k2\pi, S_2 w_2 - l2\pi) G(w_1, w_2) dw_1 dw_2 = \frac{1}{S_1 S_2} G(k2\pi/S_1, l2\pi/S_2)$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{S_1 S_2} \delta(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2}) G(w_1, w_2) dw_1 dw_2$$

and Dirac delta functions are defined by integrals.

Fourier Transform Types

Let $0 < a_1 < b_1 < \pi$ and $0 < a_2 < b_2 < \pi$.

- We will say that a Fourier transform $F_A(w_1, w_2)$ is low pass if $|F_A(w_1, w_2)| \sim 0$ when $a_1 < |w_1| < \pi$ and $a_2 < |w_2| < \pi$.
- We will say that a Fourier transform $F_A(w_1, w_2)$ is high pass if $|F_A(w_1, w_2)| \sim 0$ when $0 < |w_1| < a_1$ and $0 < |w_2| < a_2$.
- Finally, we will say that a Fourier transform $F_A(w_1, w_2)$ is band pass if $|F_A(w_1, w_2)| \sim 0$ when $0 < |w_1| < a_1$, $b_1 < |w_1| < \pi$ and $0 < |w_2| < a_2$, $b_2 < |w_2| < \pi$.



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 23

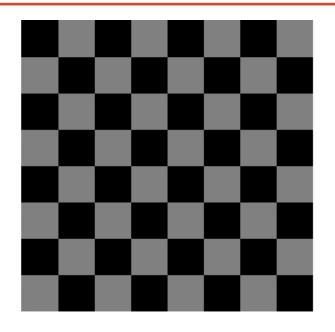
• Given a 2-D sequence A we would like to obtain a sequence C by sub-sampling A:

$$C(m,n) = A(S_1m, S_2n)$$
 (22)

where $S_1, S_2 > 0$ are integers.

- We would like C to have close resemblance to A.
- For example given a 512×512 image we would like to obtain a 256×256 image by picking every other pixel in the original image.
- Things may go very wrong in sampling with unexpected effects.

Example



Two possible 4x4 sub-sampled images

25

Original image (8x8)

Fourier Transform of Sampled Sequence

B(m,n) = A(m,n)comb(m,n) $C(m,n) = B(S_1m,S_2n)$

• First obtain the Fourier transform of B using the multiplication property:

$$\begin{split} F_B(w_1, w_2) &= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') F_{comb}(w_1 - w_1', w_2 - w_2') dw_1' dw_2' \\ &= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') \left[\frac{4\pi^2}{S_1 S_2} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \delta(w_1 - w_1' - \frac{k2\pi}{S_1}, w_2 - w_2' - \frac{l2\pi}{S_2}) \right] dw_1' dw_2' \\ &= \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \frac{1}{S_1 S_2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} F_A(w_1', w_2') \delta(w_1 - w_1' - \frac{k2\pi}{S_1}, w_2 - w_2' - \frac{l2\pi}{S_2}) dw_1' dw_2' \end{split}$$

For $w_1, w_2 \in [-\pi, \pi)$, let $K(w_1) = \{k | w_1 - \frac{k2\pi}{S_1} \in [-\pi, \pi)\}$ and $L(w_2) = \{l | w_2 - \frac{l2\pi}{S_2} \in [-\pi, \pi)\}$. Then: $F_B(w_1, w_2) = \frac{1}{S_1 S_2} \sum_{k \in K(w_1)} \sum_{l \in L(w_2)} F_A(w_1 - \frac{k2\pi}{S_1}, w_2 - \frac{l2\pi}{S_2})$ (23)

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 26

Example

Suppose $S_1 = S_2 = 2$, i.e., we are sub-sampling by 2. Then for $w_1, w_2 \in (-\pi, \pi)$,

$$K(w_1) = \{k | w_1 - k\pi \in (-\pi, \pi)\} = \{-1, 0, 1\}$$

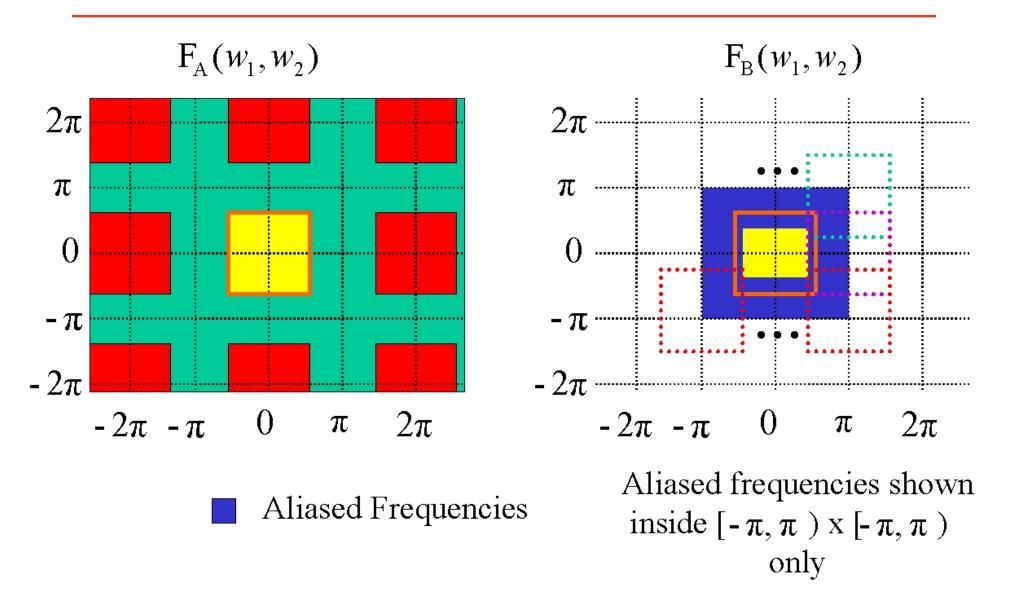
$$L(w_2) = \{l | w_2 - l\pi \in (-\pi, \pi)\} = \{-1, 0, 1\}$$

and we have:

$$F_B(w_1, w_2) = \sum_{k=-1}^{1} \sum_{l=-1}^{1} F_A(w_1 - k\pi, w_2 - l\pi)$$
(24)

• If during this process there is overlapping, i.e., say $(F_B(w_1, w_2) - F_A(w_1, w_2))F_A(w_1, w_2) \neq 0$ then we will say that there is aliasing in the sub-sampling operation.

Example - contd.



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 28

Going back to the transform we were calculating:

• We can now obtain $F_C(w_1, w_2)$

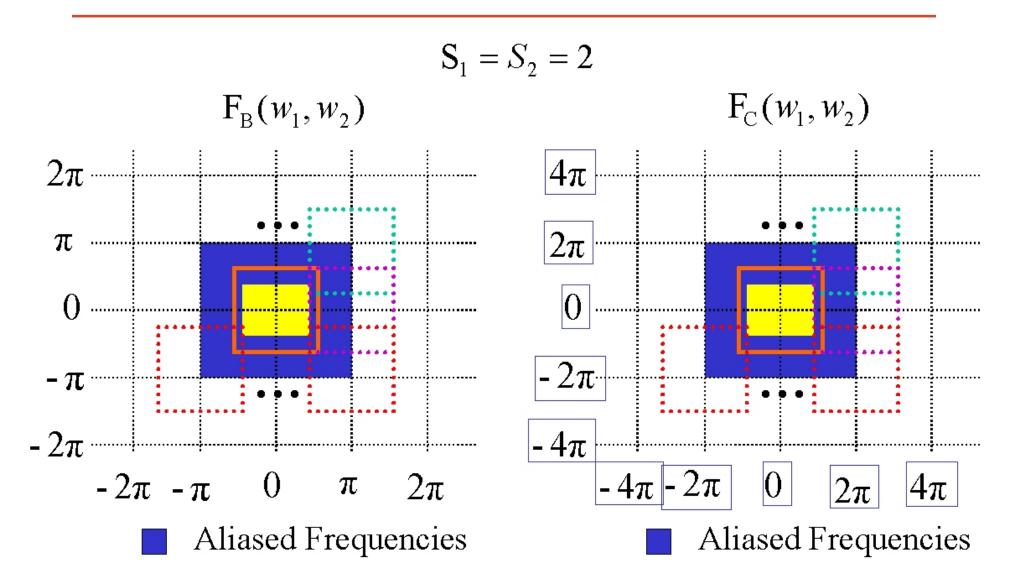
$$F_{C}(w_{1}, w_{2}) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} B(S_{1}m, S_{2}n)e^{-j(mw_{1}+nw_{2})}$$

$$= \sum_{m=\dots,-S_{1},0,S_{1},\dots,n=\dots,-S_{2},0,S_{2},\dots} B(m,n)e^{-j(mw_{1}/S_{1}+nw_{2}/S_{2})}$$

$$= F_{B}(w_{1}/S_{1}, w_{2}/S_{2})$$

$$= \frac{1}{S_{1}S_{2}} \sum_{k \in K(w_{1})} \sum_{l \in L(w_{2})} F_{A}(\frac{w_{1}}{S_{1}} - \frac{k2\pi}{S_{1}}, \frac{w_{2}}{S_{2}} - \frac{l2\pi}{S_{2}})$$
(25)

Example - contd.



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 30

Aliasing

- It is clear that unless we are careful, the sampled signal can be very different from the original.
- For no aliasing to occur after sampling $F_A(w_1, w_2)$ must be:

$$F_A(w_1, w_2) = 0, \ \frac{\pi}{S_1} < |w_1| < \pi, \ \frac{\pi}{S_2} < |w_2| < \pi$$
 (26)

so that there is no overlap.

- But what if there is?
 - Then we have to low-pass filter A to make sure things become conformant to the above.
 - Such a low-pass filter is called an antialiasing filter.

- In this lecture we learnt the equivalence between convolution and linear filtering.
- We reviewed two dimensional Fourier transforms of 2-d sequences.
- We discussed various properties of Fourier transforms and in particular we saw that the Fourier transform "converts" convolution to multiplication.
- Using the Fourier transform properties of Kronecker and Dirac delta functions we learnt about sampling and aliasing.

Homework VI

- 1. Show the modulation property of the Fourier transform.
- 2. Show that if a two dimensional sequence is separable then so is its Fourier transform, i.e., if $A(m,n) = A_1(m)A_2(n)$ then $F_A(w_1,w_2) = F_{A_1}(w_1)F_{A_2}(w_2)$ where $F_{A_1}(w_1), F_{A_2}(w_2)$ are one dimensional Fourier transforms such as $F_a(w) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} a(n)e^{-jwn}$.
- 3. Obtain the Fourier transform of the 2-D sequence A(m, n) given by:

	n = 0	1	2
m = 0	1	2	-1
1	2	4	-2
2	-1	-2	1

Simplify your answer as much as possible.

- 4. Calculate the Fourier transform of the limited extent sequence A(m, n) = 1, $0 \le m < 8, 0 \le n < 8$ and A(m, n) = 0 otherwise.
- 5. Calculate the Fourier transform of the limited extent sequence $A(m,n) = (-1)^{m+n}$, $0 \le m < 8, 0 \le n < 8$ and A(m,n) = 0 otherwise.
- 6. Based on the two items above, find the Fourier transform of the checkerboard image(D(m, n)). (Hint: Assume gray=2, black=0). For sampling with $S_1 = S_2 = 2$ show that there is aliasing. Calculate the Fourier transform of the sub-sampled sequence $C(m, n) = D(S_1m, S_2n)$. (Do this by using the $F_D(w_1, w_2)$. Take the inverse transform and verify with direct sub-sampling in the "sequence domain".
- © Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 33

7. Find the periodicity of $F_B(w_1, w_2)$ and $F_C(w_1, w_2)$ as obtained in sampling and aliasing slides. Draw a figure showing *both* the aliasing and periodicity involved in $F_B(w_1, w_2)$, $F_C(w_1, w_2)$. Take $F_A(w_1, w_2)$ of the original sequence and S_1, S_2 anything you like as long as there is antialiasing. Do a better job than I did.

References

[1] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.